top of page

Alpha-Tricalcium Phosphate

Contact

INNOTERE GmbH

Phone: +49 351 2599 9410

Fax: +49 351 2599 9429

Mail: order[at]innotere.de

Nachricht erfolgreich versendet!

Alpha-tricalcium phosphate is a high-temperature polymorph of TCP. Due to its reactivity it easily hydrolyzes to calcium deficient hydroxyapatite (CDHA), the main crystal phase of the mineral component of bone. Using standardized production processes, INNOTERE offers alpha-TCP powders with high phase purity and batch-to-batch reproducibility.

Order Details

  • Name: Alpha-tricalcium phosphate (α-TCP, tricalcium bis(orthophosphate), tribasic calcium phosphate)

  • Grade: Medical

  • CAS: 7758-87-4

  • Molecular Formula: Ca3(PO4)2

  • Molecular Weight: 310.18 g/mol

  • Phase Purity: >95% (up to >99%)

  • Form: Powder

  • Applications: Bone cements, bone graft substitutes, coatings, 3D powder printing, drug delivery systems, cell transfection, dental fillers, chromatography, cosmetics 

Delivery of powders with higher phase purity (up to >99%), micronized powders with defined particle sizes, special packaging as well as particle size distribution charts, XRD data, specification sheets, MSDS, COA are available on request.

Featured Publications

  • Biomimetic synthetic test system based on hydroxyapatite cement for adhesive strength evaluation of experimental mineral-organic bone adhesive materials. Otto PF, Hienz S, Mittmann S, Dümmler N, Renner T, Gergely C, Kade JC, Gbureck U. Journal of Biomaterials Applications 2024

  • Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics. Schröter L, Kaiser F, Küppers O, Stein S, Krüger B, Wohlfahrt P, Geroneit I, Stahlhut P, Gbureck U, Ignatius A. Dental Materials 2024

  • Poly(dl-lactide) Polymer Blended with Mineral Phases for Extrusion 3D Printing-Studies on Degradation and Biocompatibility. Vater C, Bräuer C, Grom S, Fecht T, Ahlfeld T, von Witzleben M, Placht AM, Schütz K, Schehl JM, Wolfram T, Reinauer F, Scharffenberg M, Wittenstein J, Hoess A, Heinemann S, Gelinsky M, Lauer G, Lode A. Polymers 2024

  • A comparative analysis of 3D printed scaffolds consisting of poly(lactic-co-glycolic) acid and different bioactive mineral fillers: aspects of degradation and cytocompatibility. Ahlfeld T, Lode A, Placht AM, Fecht T, Wolfram T, Grom S, Hoess A, Vater C, Bräuer C, Heinemann S, Lauer G, Reinauer F, Gelinsky M. Biomaterials Science 2023

  • Ceramic‐hydrogel composite as carrier for cold‐plasma reactive‐species: Safety and osteogenic capacity in vivo. Solé-Martí X, Labay C, Raymond Y, Franch J, Benitez R, Ginebra MP, Canal C. Plasma Processes and Polymers 2022

  • Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment. Raymond Y, Bonany M, Lehmann C, Thorel E, Benítez R, Franch J, Espanol M, Solé-Martí X, Manzanares MC, Canal C, Ginebra MP. Acta Biomaterialia 2021

  • Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Vidal L, Kampleitner C, Krissian S, Brennan MÁ, Hoffmann O, Raymond Y, Maazouz Y, Ginebra MP, Rosset P, Layrolle P. Scientific Reports 2020

  • Calcium Phosphate Spacers for the Local Delivery of Sitafloxacin and Rifampin to Treat Orthopedic Infections: Efficacy and Proof of Concept in a Mouse Model of Single-Stage Revision of Device-Associated Osteomyeliti. Trombetta RP, Ninomiya MJ, El-Atawneh IM, Knapp EK, de Mesy Bently KL, Dunman PM, Schwarz EM, Kates SL, Awad HA.  Pharmaceutics 2019

  • Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Vella JB, Trombetta RP, Hoffman MD, Inzana J, Awad H, Benoit DSW. Journal of Biomedical Materials Research Part A 2018

  • 3D Printed Bioceramics for Dual Antibiotic Delivery to Treat Implant-Associated Bone Infection. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. European Cells and Materials 2015

bottom of page